Moroccan Journal of Biology 07-2008/N 4-5

Phylogenetic and introgression analyses of mitochondrial DNA in
five natural populations of mussels (Mytilus spp.) from the North-
Eastern Coasts of Morocco

0. Sammerl, M. Manchadoz, C. Infantez, E. Zuastiz, A. Crespoz, Y. Saoud!

'Département de Biologie, Faculté des Sciences, B.P. 2121 Tétouan 93002, MAROC. Corresponding author:
Phone +21239994500, Fax +21239994500, ysaoud@fst.ac.ma
’IFAPA Centro El Toruiio. Camino Tiro de Pichén s/n. 11500 EI Puerto de Santa Maria, Cédiz, SPAIN.

Abstract

Mussel species of the genus Mytilus have two types of mitochondrial DNA (mtDNA), the M
type, transmitted from male parents to their sons, and the F type, transmitted maternally. In
the present survey, we have determined the level of polymorphism of both mtDNA types in
mussels from five locations sampled along the north-eastern Moroccan coasts. PCR technique
was used to amplify 113 F type and 46 M type partial sequences of the mtDNA control
region. A total of 56 and 40 different haplotypes from F and M mtDNA types were identified,
respectively. Phylogenetic analyses revealed that both F and M lineages were closely related
to Mytilus edulis. Five individuals from each of the analyzed populations were randomly
selected, and assayed for the nuclear Glu-5°. A DNA band pattern compatible with Mytilus
galloprovincialis was identified in all cases. These findings lead to the conclusion that a high
level of introgression of M. edulis mtDNA into M. galloprovincialis occurs in this
geographical area.
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Introduction
The blue mussel Mytilus M. galloprovincialis occurs all along the
galloprovincialis (Lamarck, 1819) Iberian Peninsula (Sanjuan et al., 1994).

distributes in the Atlantic from the southern Similarly, the exclusive presence of M.

coast of England and Ireland to the Iberian
peninsula, and throughout the
Mediterranean and the Black Sea (Lubet e?
al. 1984, Gardner 1992, Seed 1992). The
close phylogenetically related Mytilus
edulis (Linnaeus, 1758), by constrast, has a
more boreal distribution in the western
Atlantic Ocean (Garrido-Ramos et al.,
1998). Hybrid zones along the western
European coasts between both species (west
France, west Ireland, southwest England)
have been reported, showing a mosaic
structure with populations of parental
genotypes  alternating ~ with  mixed
populations (Skibinski et al. 1983, Coustau
et al. 1991, Gardner 1994, Bierne et al.
2003). On the contrary, concordance
between mophological variation and
enzyme polymorphisms indicates that only

galloprovincialis has been reported along
the Moroccan coasts based on allozyme
markers (Comesafa et al. 1998, Jaziri &
Benazzou  2002) and intron-length
polymorphism at the actin gene locus mac-1
(Daguin & Borsa, 1999), although no
mtDNA  characterization of Moroccan
mussel populations has been carried out to
date.

Marine mussels of the genus Mytilus
carry two types of mitochondrial genomes,
one that is transmitted maternally to
offspring of both sexes, named F type, and
another that is transmitted paternally to
male progeny only, named M type
(Skibinski et al. 1994, Zouros et al. 1994).
This unique mechanism of transmission of
two gender associated mitochondrial
genomes (Skibinski ez al. 1994b, Zouros et
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al. 1994b) has been called doubly
uniparental inheritance (DUI). In the DUI
system females are homoplasmic for an F
genome, while males are heteroplasmic for
a maternal F and a paternal M genome,
although this heteroplasmy is
unconventional in the sense that somatic
tissues are dominated by the F genome and
the gonad by the M genome (Garrido-
Ramos et al., 1998).

Hybridization between M. edulis and
M. galloprovincialis is common in natural
mussel populations along the coasts of
western Europe (Skibinski et al. 1983,
Coustau et al. 1991, Gardner 1994, Daguin
et al. 2001, Hilbish ez al. 2002, Bierne et al.
2003). As a result, several surveys have
shown the introgression of M. edulis-like
mtDNA into M. galloprovincialis. For
example, mitochondrial haplotypes
corresponding to  Mediterranean M.
galloprovincialis were generally absent in
Atlantic M.  galloprovincialis, being
detected in only a putative hybrid
population in southwest Britain (Rawson e?
al. 1999, Hilbish et al. 2000). In a similar
way, phylogenetic analyses of paternal and
maternal mtDNA haplotypes grouped in
two separate clusters, one containing
Mediterranean M. galloprovincialis (rare in
Atlantic M. galloprovincialis), and the other
one containing all haplotypes found
exclusively in M. edulis, together with
haplotypes found in both Atlantic and

Material and methods
Sampling

Mussel samples used in the present
work were collected during November 2004
in five locations from the north-eastern
Moroccan coasts (Figure 1): Cap Spartel
(35°47'N; 5°56"W), Belyounech (35°55'N;
5°24'W), M'diq (35°41'N; 5°19'W), Martil
(35°37'N; 5°16'W) and Azla (35°33'N;
5°14°W). A total of 24 individuals were
sampled from each location.

DNA isolation
Total genomic DNA was isolated
from 150 mg of each tissue using

Mediterranean M. galloprovincialis
(Quesada et al., 1998). The fact that most
Atlantic and a proportion of Mediterranean
M. galloprovincialis carry M. edulis-like
haplotypes indicates they have been
introgressed by M. edulis-like mtDNA.

The mussel polyphenolic adhesive
protein is a key component in the
attachment of mussels to the substratum,
and is encoded by the G/u locus (Rawson et
al., 1996). The primary sequence of this
protein is highly divergent between M.
edulis and M. galloprovincialis (Filpula et
al. 1990, Inoue & Odo 1994), which has
allowed the design of a specific and direct
PCR-based assay (referred to as Glu-5’
marker) for the identification of Mytilus
species based on nuclear DNA (Rawson et
al., 1996). The aim of the present work was
to analyze the existence of mtDNA
introgression in mussels of the genus
Mytilus from five locations of the north-
eastern coasts of Morocco: Cap Spartel,
Belyounech, M'diq, Martil, and Azla. For
this purpose, we have analyzed the rapidly
evolving mitochondrial control region
(Aquadro & Greenberg 1983, Desjardins &
Morais 1990, L'Abbe et al. 1991) in both F
and M type genomes. Phylogenetic analyses
for both F and M haplotypes were
conducted. Additionally, the nuclear Glu-5’
marker was analyzed for species
identification.

SPAIN

Belyounech

MOROCCO

Figure 1. Sampling sites for Mytilus spp.: Cap
Spartel, Belyounech, M"diq, Martil and Azla.

FastDNA® kit during 40 s and speed
setting 5 in the Fastprep® FG120
instrument (BiolOl, Inc). All DNA
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isolation  procedure was  performed
following the manufacturer’s protocol.

PCR amplification, purification and
sequencing

For PCR amplification of a partial
fragment of F and M type mitochondrial
control region, three primers were designed
using the software Oligo® v6.82
(Medprobe) based on sequences retrieved
from GenBank/EMBL/DDBJ database
corresponding to M. edulis (F: AF315573;
M: AF188279) and M. galloprovincialis (F:
AF188278; M: AF188280) control region.
The most conserved areas were localized to
assure an efficient amplification. For F
type, the forward primer MytRCel (5'-
TTGGAATAGATGCAGGAGATGGGGG
CTTA-3") and the reverse primer MytRCe2
(5-
TTTCAAACCCAGGTAAATCTCGTGAG
CAACAG-3") were used. For the M type,
the same reverse primer MytRCe2 was used
together with the forward primer MytRC-3
(5-
AGGTGTTTCTACACGCTTAGATTCCT
TGCCATT-3"). Reactions were carried out
in 25 pl of reaction volume: 1 pul of DNA
template (~30-50 ng) was added to 24 ul of
PCR mix consisting of 17.25 pl of sterile
distilled water, 2.5 pl of ANTP mix 10 mM,
2.5 pl of 10x buffer, 1 pl of MgCl, 50 mM,
0.25 pl (1.25 units) of BioTaq DNA
polymerase (Bioline, London, UK) and 0.5
ul of each primer (10 puM). The thermal
cycle profile was identical for all the
amplified fragments. An initial denaturation
step of 96 °C for 2 min was followed by 35
cycles of 96 °C for 30 s, 60 °C for 30 s, and
72 °C for 1 min. PCR products were
electrophoresed on a 2 % agarose gel and
visualized via ultraviolet trans-illumination
before sequencing.

Double-stranded DNA products were
purified using a PCR product purification
kit (Marlingen Bioscience) and
subsequently sequenced using the BigDye
Terminator v3.1 Cycle Sequencing Kit
(Applied Biosystems) on a 3130 Genetic
Analyzer (Applied Biosystems). The
obtained DNA sequences were analyzed

using the computer programs Sequencing

Analysis version 34.1 (Applied
Biosystems) and Seqman v5.51
(DNASTAR).

Sequence and phylogenetic analyses

Both F and M sequences were aligned
using Megalign v5.51 software
(DNASTAR). DnaSP v4.10.3 (Rozas et al.,
2003) was used to estimate the number of
polymorphic sites among F and M
sequences, as well as the frequency of each
haplotype.
For the stablishment of phylogenetic
relationships among F haplotypes, reference
sequences retrieved from the
GenBank/EMBL/DDBJ database
corresponding to M. edulis (Accession No.
AF315573) and M. galloprovincialis
(Accession No. AF188278) control region
were also employed. Similarly, for M types,

reference  sequences for M. edulis
(Accession No. AF188279) and M.
galloprovincialis (Accession No.

AF188280) control region were added. In
each case, Modeltest v3.06 software
(Posada & Crandall, 1998) was employed
as a guide to determine the best-fit
maximum likelihood (ML) model as
previously described (Cunningham et al.,
1998).  Neighbor-joining  phylogenetic
analysis of both F and M haplotypes was
implemented in PAUP*4.0b10 (Swofford,
2000) using the ML distance settings. The
degree of confidence assigned to nodes in
trees was achieved by bootstrapping
(Felsenstein, 1985) with 1000 iterations. In
addition, a minimum spanning network was
built from the matrix of absolute numbers
of substitution differences between all pairs
of haplotypes using the program TCS v1.13
(Clement et al., 2000). The network was
drawn by hand based on the output of the
programme.

Analysis of Glu-5’ marker

Reactions were conducted in a final
volume of 12.5 ul containing 50 ng of total
DNA, 2.5 nmol of dNTPs, 50 pmol of each
of the primers JH-5 and JH-54 (Rawson et
al., 1996), 1.5 mM of MgCl,, 1x buffer, and
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0.5 U of BioTaq DNA polymerase. The
thermal cycle profile was as follows: an
initial denaturation step of 3 min at 94 °C
was followed by 30 cycles of 94 °C for 20

electrophoresis on ethidium bromide-
stained 2.5% agarose gel and visualized via
ultraviolet trans-illumination. A 100 bp
DNA ladder (Invitrogen) was used as

s, 53 °C for 20 s, and 72 °C for 45 s. PCR molecular weight standard.
products were then examined by
A B
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Figure 2. A) List of all 78 polymorphic sites (gaps included) found in F type mitochondrial control region
haplotypes. Numbers above sites indicate arbitrary positions with respect to the first sequence (HO1) in the 635
bp alignment. Dots indicate identity; dashes represent indels. B) Frequency (in percentage of individuals) of each

of the 56 different haplotypes.

Results and discussion
Sequence variation

Twenty-four samples from five
locations of the north-eastern coasts of
Morocco were analyzed. Amplicons of
variable sizes were obtained for both F and

M mtDNA types. Lenghts were determined
to range between 631-633 bp and 350-363
bp in the F type and M type, respectively.
A total of 56 and 40 different haplotypes
were identified among 113 F and 46 M
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type sequences, respectively. In the case of
F type, 40 haplotypes were singletons
(Figure 2). On the contrary, haplotypes
HO2 and HI3 revealed as the most
abundant, being present in 18 (15.93%)
and 15 (13.27%) individuals, respectively.

For M type, 37 out of 40 haplotypes were
singletons, whereas haplotypes HO1, H13
and H24 were detected in 2 (4.35%), 5
(10.87%) and 2 (4.35%) individuals,
respectively (Figure 3).

A

HO1l GTATGTGACT ATTCGAACCC ACAAAGGCGT TCCTCGAAAT AAAGCTGCCT ACAAA-AG-T GCTTTGATTG TAAATGGTC
- LGt e e T..

HO2 .......... ........ A, ... e e Tovene cininnnan c

B

11111111111 1111111111 1111111112 2222222222 2222333333 333333333
111222233 3334445680 0011111222 3335677778 8888888990 0124445666 7789000111 111133345

Haplotype frequency (%)

3238058934 5781367341 5801368128 4569307890 1456789053 5112565269 4790347012 345635820

-
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I
N

Figure 3. A) List of all 79 polymorphic sites (gaps included) found in M type mitochondrial control region
haplotypes. Numbers above sites indicate arbitrary positions with respect to the first sequence (HO1) in the 365
bp alignment. Dots indicate identity; dashes represent indels. B) Frequency (in percentage of individuals) of each

of the 40 different haplotypes.

A total of 78 out of 635 sites revealed
as polymorphic in the mtDNA F type
(Figure 2). These polymorphisms included
113 transitions (41 A<G and 72 CoT),
and 22 transversions (3 A-C, 9 AT, 3
TG, and 7 CG). In addition, 7 indels
were detected. For the M type, 79 out of
365 sites revealed as polymorphic,
including 84 transitions (38 A<>G and 46
CoT), and 43 transversions (13 A<C, 10
AT, 5 TG, and 15 CoG), plus 22
positions exhibiting indels (Figure 3). The
higher polymorphisms detected in M type
in relation to F type could be a consequence

of the apparently negligible role of the M
type in somatic tissues, with absence of
selective pressure (Hoeh ef al., 1996).

Phylogenetic relationships among F and
M haplotypes

Modeltest analysis determined the
TrN+G model as being the best-fit model of
DNA evolution for the F type control
region with the following ML parameters:
base frequencies were 0.2921, 0.1603, and
0.2584; R(a)=1.0000, R(b)=4.2993,
R(c)=1.0000, R(d)=1.0000, and
R(e)=15.5565; gamma distribution shape
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Figure 4. Unrooted neighbor-joining tree showing the phylogenetic relationships of mitochondrial F type
haplotypes. Haplotypes are numbered as in figure 2. Only bootstrap values higher than 50% are indicated on the

tree.
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Figure 5. Minimum spanning network of mitochondrial F type haplotypes from Mytilus spp. See text for details.
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Figure 6. Unrooted neighbor-joining tree showing the phylogenetic relationships of mitochondrial M type
haplotypes. Haplotypes are numbered as in figure 3. Only bootstrap values higher than 50% are indicated on the

tree.
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Figure 7. Minimum spanning network of mitochondrial M type haplotypes from Mytilus spp. See text for

details.



O. Sammer et al. / Moroccan J. Biol. 4-5 (2008) 63-73 70

Cap Spartel  Behyounech M'dig

Martil Azla

1 4 81224 56 81214

715171821

2 7 B1220 1 7 91417

Figure 8. PCR products generated using the Glu-5’ assay in five randomly selected individuals of each mussel
population. Sizes of the M. galloprovincialis-specific PCR products are shown on the right.

parameter was 0.2012. Phylogenetic
relationships among F haplotypes were
then established using the neighbor-joining
method with the maximum likelihood
distance settings. The wunrooted ftree
revealed that only haplotype H42 appeared
closely linked to M. galloprovincialis
reference sequence (bootstrap support of
100%), while the other 55 haplotypes were
more related to M. edulis than to M.
galloprovincialis (Figure 4).

Relationships among Mytilus F
haplotypes were also analyzed using a
minimum spanning network (Excoffier &
Smouse, 1994). The two most abundant
haplotypes, HO2 (15.93% of individuals)
and H13 (13.27%), displayed a central and
a star-like position in the mutation
network. Thus they should be considered
as the most ancestral haplotypes (Figure 5).
Most haplotypes were closely related to
HO02 and H13 with the exception of H42.
These results are in agreement with
phylogenetic analysis previously
described.

In the case of M type haplotypes, the
HKY+G model of sequence evolution was
the most appropriate as selected by
Modeltest with the following parameters:
base frequencies were 0.3552, 0.1637, and
0.1886; Ti/tv = 3.0047; gamma distribution
shape parameter was 0.2148. Phylogenetic

relationships were also established using
the neighbor-joining method with the ML
distance settings (Figure 6). Among the 40
different haplotypes, 39 corresponded to
M. edulis M type, while only haplotype
H30 showed a close relatedness to M.
galloprovincialis. In fact, this branch
exhibited the highest bootstrap support
(100%).

Mutational network of M haplotypes
had different features in comparison with
the previously described for F haplotypes
(Figure 7). Haplotype H13, the most
abundant one (10.87% of individuals), was
observed in a central position connected to
the remaining haplotypes by a variable
number of mutational changes. The
haplotype H30, corresponding to M.
galloprovincialis, could not be connected
to the network due to the excessive
differences with respect to the rest of
haplotypes. Again, results from mutational
network and phylogenetic analysis were in
accordance.

Introgression levels as determined by
Glu locus

Previous surveys based on allozyme
differentiation between both species
(Comesafia et al. 1998, Jaziri & Benazzou
2002) and on intron-length polymorphism
at the actin gene locus mac-1 (Daguin &
Borsa, 1999), indicated the exclusive
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existence of M. galloprovincialis along the
Mediterranean and Atlantic coasts of
Morocco. Taking into account the high
proportion of M. edulis-like haplotypes
(both F and M) among the samples
analyzed, we considered the need to assay
the possible occurrence of mtDNA
introgression from M. edulis into M.
galloprovincialis largely described in the
literature (McDonald & Koehn 1988,
Coustau et al. 1991, Viinold & Hvilsom
1991, Comesaiia et al. 1999, Gardner
1994, Quesada et al. 1995, Rawson &
Hilbish 1995, Rawson et al. 1999, Toroet
al. 2004).

We performed a molecular analysis
in order to detect polymorphisms at the
nuclear locus encoding the mussel
polyphenolic adhesive protein (G/u locus).
In the present work, experimental
conditions described in Rawson et al.
(1996) were applied for the Glu-5’ marker.
In the Glu-5> PCR assay, species-specific
banding patterns are produced. In M.
edulis, a single 350 bp band, and
occasionally and additional 380 bp band, is
expected. On the contrary, in M
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